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Abstract. The families of fermionic Schwinger functions for the free theory and for theories
interacting with a classical gauge field are constructed as (a subset of) the moments of certain
measures, in close analoguey to the well known bosonic case. The fermionic measures, however,
are not uniquely determined and can be chosen, for example, as non-centred Gaussian measures
with support on a Hilbert–Schmidt extension of the two-particle Hilbert spaceH ∧H.

1. Introduction

A Euclidean quantum field theory is given by the set of its Schwinger functions, which
allow a reconstruction of the corresponding Wightman quantum field theory in Minkowski
spacetime [24]. For interacting boson models probabilistic methods for constructing
Schwinger functions are of major importance [6], but cannot be applied to fermionic theories
due to the asymmetry of their Schwinger functions. Although Segal’s guage space approach
[25, 26] gives non-commutative analogues of probabilistic notions and has been widely used
for fermions [7], no success comparable to the bosonic case has been obtained with this
method.

The most common approach in dealing with fermionic asymmetry is the algebraic
integration theory of Berezin [3], but which invalidates all classical probabilistic techniques
of bosonic theory. Kree [14, 15] has developed a unified picture of bosonic and fermionic
integration as an algebraic calculus of forms.

In this paper a new probabilistic method for representing fermionic Schwinger functions
as moments of a measure is developed. The key observation is the fact that, due to its
SL(2,C) transformation properties, only Schwinger functions with an even number of
fermionic arguments are different from zero [28, theorem II.6]. Therefore, one may restrict
attention to the even part of Euclidean fermionic Fock space.

The second section of this paper introduces the mathematical concepts needed in the
following, beginning with asymmetric tensor algebra over the one-particle Hilbert space
H. The exponential of a second-order asymmetric tensor is examined and, finally, triplets
of Hilbert spacesH1 ⊂ H ⊂ H−1 are mentioned, which are of great importance for the
construction of the measure spaces used in this paper.

The third section discusses different integral representations of Schwinger functions
of free Euclidean Fermi fields. Of these possibilities the case of a non-centred Gaussian
measure is used in the last section to implement the interaction with a classical electro-
magnetic field.

† E-mail address: hensel@physik.uni-kl.de
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8192 M Hensel

This paper also shows the applicability of classical probabilistic methods to fermionic
theories. In future work, which is currently in progress, the problem of implementing more
non-trivial fermionic models as perturbations of the measures obtained in this paper will be
addressed. This is the main motivation for this paper, which will serve as a starting point
for further work. The measure theoretic point of view was chosen since bosonic theories
have already shown the power (but also high degree of difficulty) of this ansatz.

2. Algebraic aspects of fermionic integration

Before going into details it should be stressed that the termalgebraic is used in a rather
restricted sense, referring only to asymmetric tensor algebra over one particle space. This
paper does not address any questions related to operator algebras for representing CAR. An
excellent reference for this subject is a paper by Araki [1].

2.1. Basic Hilbert space and asymmetric forms

Let E be a complex separable Hilbert space andE∗ ∼= E its dual space. LetH = E ⊕ E∗ be
the direct sum ofE andE∗. H is again a complex Hilbert space with inner product(f |g),
which is assumed to be linear in the second argument.H has the following additional
structure.

(1) There exists an antiunitary involution

H 3 f 7→ f ∗ ∈ H f ∗∗ = f (1)

such thatE is isometrically mapped toE∗ and vice versa.
(2) The duality betweenE andE∗ can be extended to the bilinear form

〈f |g〉 = (f ∗|g) f, g ∈ H (2)

onH, such thatE andE∗ are maximal isotropic subspaces of this form.
The basic example isH = L2(R) ⊗ C2 with the familiar inner product(f |g) =∫

R f
†(x)g(x) dx. E andE∗ are given by

E = L2(R)⊗
(

1
0

)
E∗ = L2(R)⊗

(
0
1

)
with the involution∗ defined by

f ∗(x) =
(

0 1
1 0

)
f (x).

Besides the symmetric form (2), an asymmetric form

ω : H×H 7→ C

can be constructed as follows. Letj± : H 7→ H be given by

j±(a + b) = a ± b a ∈ E, b ∈ E∗. (3)

Then〈f |j+g〉 is the symmetric form (2) and

ω(f, g) = 〈f |j−g〉 f, g ∈ H (4)

is an asymmetric form onH. Similarly, there can be defined asymmetric forms for more
general operators thanj−. For that purpose letM : E 7→ E be a bounded linear operator on
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E . The asymmetric extensionM− of M to a bounded linear operator onH can be defined
by

M−f = Mf f ∈ E
M−f = −(M†f ∗)∗ f ∈ E∗. (5)

The bilinear formωM : H×H 7→ C
ωM(f, g) = 〈f |M−g〉 f, g ∈ H (6)

is clearly asymmetric inf andg and is uniquely determined by its values forf, g ∈ E by

ωM(f
∗, g) = (f |Mg)

sinceE andE∗ are isotropic subspaces.
For an arbitrary asymmetric bilinear formω on H one can always find a maximal

isotropic decompositionH = F ⊕ G with F ∼= G. Then, at least after a unitary
transformation,F may be identified withE and alsoG with E∗. Therefore, equation (6)
gives the most general kind of asymmetric bilinear forms onH.

2.2. Antisymmetric tensor algebra

Let H⊗n be the n-fold tensor product

H⊗n = H⊗ · · · ⊗H
with inner product

(f1⊗ · · · ⊗ fn|g1⊗ · · · ⊗ gn) = n!
n∏
k=1

(fk|gk). (7)

Observe the factorn! in front of the right-hand side of equation (7).
The asymmetric tensor product of elementsf1, . . . , fn ∈ H is defined by

f1 ∧ · · · ∧ fn = 1

n!

∑
σ∈Sn

sign(σ )fσ(1) ⊗ · · · ⊗ fσ(n). (8)

The incomplete space of algebraic tensors of rankn overH is denoted byA−n (H) and the
completion with respect to the inner product (7) byT −n (H).

The inner product (7) inT −n (H) is deliberately chosen to be normalized to the following
determinant

‖f1 ∧ · · · ∧ fn‖2
n = det((fi |fj )). (9)

The Hilbert space direct sum of theT −n (H)—the fermionic Fock space—is denoted by
T −(H), that is

T −(H) =
∞⊕
n=0

T −n (H) (10)

whereT −0 (H) simply meansC. The inner product inT −(H) is defined by

‖F‖2 =
∞∑
n=0

‖Fn‖2
n (11)

if F =∑∞n=0Fn, Fn ∈ T −n (H). A dense subset ofT −(H) is given by the algebraic sum

A−(H) =
∞⊕
n=0

A−n (H)
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of all elementsF =
∞∑
n=0

Fn, Fn ∈ A−n (H), with Fn = 0 for all sufficiently largen.

The involution (1) and the bilinear form (2) onH can be naturally extended toT −(H)
by

(f1 ∧ · · · ∧ fn)∗ = f ∗n ∧ · · · ∧ f ∗1 , fi ∈ H, i = 1, . . . , n

and similarly

〈A|B〉 = (A∗|B) A,B ∈ T −(H).
Let C2(H) be the set of all Herbert–Schmidt (HS) operators onH. Then it is well

known [17] that there is a one-to-one correspondence between tensorsA ∈ H ∧H and HS
operatorsLA ∈ C2(H) onH, given by

H ∧H 3 A 7→ LA ∈ C2(H)
〈A|f ∧ g〉 = 〈f |LAg〉.

(12)

If A ∈ E∗ ∧ E , then one even hasLAf ∈ E∀f ∈ E and alsoLAg ∈ E∗∀g ∈ E∗, that is,LA
can be considered as an HS operator on the spaceE .

The even partT −even(H) of the fermionic Fock space is defined by

T −even(H) =
∞∑
n=0

T −2n (H).

Coherent states (in the sense given, for example, in the introduction of the book [13])
in T −even(H) are defined by

expZ = 1+ Z + 1

2
Z ∧ Z + 1

3!
Z ∧ Z ∧ Z + · · · Z ∈ D (13)

whereD is some dense subspace ofH ∧H, may be equal toH ∧H. Since

expf ∧ g = 1+ f ∧ g ⇔ f ∧ g = expf ∧ g − exp 0

for f, g ∈ H, it is easy to see that the linear hull of the coherent states (13) is dense in
T −even(H).

The convergence of expZ in T −even(H) is shown in the following lemma.

Lemma 1.Let A1, A2 ∈ H ∧H. Then

〈expA1| expA2〉 = detH(1I+ LA1LA2)
1
2 . (14)

If one even hasA1, A2 ∈ E∗ ∧ E , and soLA1, LA2 can be considered as operators onE , one
obtains

〈expA1| expA2〉 = detE (1I+ LA1LA2). (15)

Proof. Equation (15) is well known, for example, from [17]. After some obvious notational
changes the general form (14) can be identified with Theorem III.7 in the work of Jaffe,
Lesniewski and Weitsman [12]. �

The symbols detH(1I + LA1LA2) and detE (1I + LA1LA2) denote the determinant of
1I + LA1LA2 as operator on the spaceH and, respectively,E . Note that in the bosonic
case the exponential expB = 1+ B + 1

2B ∨ B + · · · does not converge for allB ∈ H ∨H
(see, for example, [18, equation 3.25]).
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For inner products of tensorsA ∈ T −(H) with exponentials of second order tensors one
obtains the following formula, which clearly shows the asymmetric Gaussian combinatorics
of free fermionic 2n-point functions.

〈expA|f1 ∧ · · · ∧ f2n〉 = 1

n!
〈A∧n|f1 ∧ · · · ∧ f2n〉

= 1

2nn!

∑
σ∈S2n

sign(σ )〈A|fσ(1) ∧ fσ(2)〉 · · · 〈A|fσ(2n−1) ∧ fσ(2n)〉 (16)

with fi ∈ H, i = 1, . . . ,2n. If one hasA ∈ E∗ ∧ E , then (16) considerably simplifies to
[17]

〈expA|f ∗n ∧ · · · ∧ f ∗1 ∧ g1 ∧ · · · ∧ gn〉 =
∑
σ∈Sn

sign(σ )〈A|f ∗1 ∧ gσ(1)〉 · · · 〈A|f ∗n ∧ gσ(n)〉

=
∑
σ∈Sn

ε(σ )(f1|LAgσ(1)) · · · (fn|LAgσ(n))

= (f1 ∧ · · · ∧ fn|0(LA)(g1 ∧ · · · ∧ gn))
wherefi, gj ∈ E, i, j = 1, . . . , n. Here0(L) : T −(H) 7→ T −(H) denotes the usual second
quantization of a bounded linear operatorL : H 7→ H, defined by

0(A)(f1 ∧ · · · ∧ fn) = (Af1) ∧ · · · ∧ (Afn) fi ∈ H.
For an operatorLA : E 7→ E , which, according to equation (12), is defined by an element
A ∈ E∗ ∧ E , one consequently obtains

LexpA = 0(LA). (17)

The left-hand side of this equation is defined in analoguey to (12) by

〈expA|F ∗ ∧G〉 = (F |LexpAG) F,G ∈ T −(H).

2.3. Hilbert space triplets

Let T : H 7→ H be an HS operator, such thatH1 = TH is dense inH. H1 itself is a
Hilbert space with inner product

(f |g)1 = (T −1f |T −1g) f, g ∈ H1.

Let H−1 be the completion ofH with respect to the inner product

(f |g)−1 = (Tf |T g) f, g ∈ H.
Obviously, one hasH1 ⊂ H ⊂ H−1 andH−1 is the dual space ofH1 with respect to the
duality which is defined by the inner product inH [2]. Note that [2, section 1.9]

(H ∧H)±1 = H±1 ∧H±1.

3. Construction of measures

3.1. T −even(H) asL2-space

The coherent states (13) inT −even(H) allow for the construction of the mapping

A 3 T −even(H) 7→ φA(Z) = (expZ|A) Z ∈ D (18)
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from T −even(H) to the spaceF(D) of functionsφA(Z) overD, whereD is the subspace of
H ∧ H mentioned after equation (13). This space becomes a reproducing kernel Hilbert
space (see [22], but also [20]) with respect to the scalar product

(φF‖φG) = (F |G) F,G ∈ T −even(H). (19)

The reproducing kernel is given by

K(A,B) = (expA| expB)

that is

(K(·, Z)‖φF ) = φF (Z).
The spaceF(D) can be represented as a subspace of anL2-space. For that purpose,

let (H ∧H)1 ⊂ H ∧H ⊂ (H ∧H)−1 be the Hilbert space triplet constructed from a HS
operatorT in H as in section 2.3. Let(H ∧ H)R and (H ∧ H)R±1 be the real subspaces
with respect to the conjugation (1), that is, the spaces of allA = A∗. Furthermore, letµ0,1I
be complex white noise on(H ∧ H)−1 and ν0,1I be real white noise on i(H ∧ H)R−1, the
imaginary subspace of(H ∧H)−1, that is, the subspace of allA∗ = −A, which again is a
real Hilbert space. For a general discussion of the support properties of measures on infinite
dimensional spaces see [29]. Complex white noise is constructed in the book of Hida [9].

Let F ∈ T −even(H1) be such that in the representation

F =
∞∑
n=0

F2n F2n ∈ T −2n (H1)

only a finite number of elementsF2n is different from zero. ThenφF (Z) is a continuous
function on(H ∧ H)−1 and i(H ∧ H)R−1. The choice i(H ∧ H)R−1 for the support of real
white noise is motivated by the fact that for a real orthonormal basis{ei}i∈N in H, that is,
a basis which fulfils

e∗i = ei ∀i ∈ N (20)

the basic monomials(expZ|ei ∧ ej ) = (Z|ei ∧ ej ) are real functions. But this choice is only
a matter of convenience and each other real subspace ofH−1 ∧H−1 would also suffice.

Due to the linearity properties of integral and scalar product it is sufficient to consider
elements of the form

F = ei1 ∧ · · · ∧ ei2n i1 < · · · < i2n

G = ej1 ∧ · · · ∧ ej2n j1 < · · · < j2n

where allei are elements of the real basis (20). Then one obtains

(expZ|F) = 1

2nn!

∑
σ∈S2n

sign(σ )(Z|eiσ(1) ∧ eiσ(2) ) · · · (Z|eiσ(2n−1) ∧ eiσ(2n) )

=
∑

σ∈OS2n

sign(σ )(Z|eiσ(1) ∧ eiσ(2) ) · · · (Z|eiσ(2n−1) ∧ eiσ(2n) )

and similarly for(expZ|G). Let the set of ordered permutationsOS2n be defined by

OS2n = {σ ∈ S2n|σ(2i − 1) < σ(2i), σ (1) < σ(3) < · · · < σ(2n− 1)}
with ]{OS2n} = (2n)!

2nn! = (2n− 1)!!. For ρ ∈ {ν0,1I, µ0,1I}, then, one gets∫
(expZ|F)(expZ|G) dρ(Z)

=
∑

σ,π∈OS2n

sign(σ ) sign(π)
∫
(Z|eiσ(1) ∧ eiσ(2) ) · · · (Z|ejπ(2n−1) ∧ ejπ(2n) ) dρ(Z).
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Since(Z|ei ∧ ej ) and (Z|ek ∧ el) are independent Gaussian random variables for{i, j} 6=
{k, l}, only the caseσ = π for F = G gives a non-vanishing contribution and one obtains∫
(expZ|F)(expZ|G) dρ(Z)

=
∑

σ∈OS2n

∫
|(Z|eiσ(1) ∧ eiσ(2) )|2 dρ(Z) · · ·

∫
|(Z|eiσ(2n−1) ∧ eiσ(2n) )|2 dρ(Z)

=
∑

σ∈OS2n

1= (2n− 1)!! . (21)

Let M : T −even(H) 7→ T −even(H) be defined byM|T −2n (H) = 1√
(2n−1)!!

, that is

MF =
∞∑
n=0

1√
(2n− 1)!!

F2n F =
∞∑
n=0

F2n, F2n ∈ T −2n (H)

M is self-adjoint andM1= 1. The mapping

T −even(H1) 3 F 7→ 9F (Z) = φMF (Z) = (expZ|MF) (22)

is an isometry fromT −even(H1) to a subspace ofL2((H ∧ H)−1, µ0,1I) and alsoL2(i(H ∧
H)R−1, ν0,1I), respectively.∫

9F (Z)9G(Z)dρ(Z) = (F |G) ∀F,G ∈ T −even(H1). (23)

The image ofT −even(H1) under the mapping (22) is a true subspace of bothL2-spaces, since
each coordinate(Z|ei ∧ ej ) in 9F (Z) appears at most linearly. Because of (23),9F can be
extended to allF ∈ T −even(H) and gives an isomorphism

T −even(H) 3 F 7→ 9F (Z) = (expZ|MF) ∈ L2(i(H−1 ∧H−1)
R, ν0,1I) (24)

betweenT −even(H) and a true subspace ofL2(i(H−1 ∧H−1)
R, ν0,1I).

But this isomorphism only respects the linear structure ofT −even(H). The algebraic
structure as even part of the Grassmann algebra overH cannot be mapped onto numeric
multiplication of the functionsφF (Z) or 9F (Z). One has to introduce the new product

9F (Z) ∗9G(Z) = 9F∧G(Z). (25)

This product, however, cannot be reduced in any case to a numeric identity betweenL2

functions.

3.2. Schwinger functions of the free Dirac field

The Schwinger functions of a free fermionic quantum field theory are obtained by

〈exp�S |f1 ∧ · · · ∧ f2n〉 = S2n(f1, · · · , f2n) fi ∈ H1 (26)

where�S ∈ H−1 ∧H−1 is the tensor which represents the two point function

S2(f, g) = 〈�S |f ∧ g〉 f, g ∈ H1. (27)

A sufficient condition for the existence of�S is continuity ofS2 onH ([17], lemma 3).
Without loss of generality one may assume thatS2 is given in the form

S2(f, g) = 〈f |S−g〉
where, according to (6),S− is constructed from a continuous operatorS on E . So the tensor
�S and the operatorS on E are uniquely determined by each other. IfS is positive it can
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be absorbed into the definition of the scalar product inE . In that case�S is given by the
canonical tensor

�− =
∞∑
µ=1

e∗µ ∧ eµ.

If S is not positive, then, according to a slightly modified version of theorem 2,
section 1.2, in [4], there exists a uniquely determined positive sesquilinear formβ and
an anti-unitary operatorJ onH with J 2 = −1I, such that

S2(f, g) = β(Jf |g).
The operatorJ , in general, explicitly depends on the operatorS on E . This procedure is
used in [17–19] for a moment representation of Schwinger functions, but with a different
function space representation of the complete fermionic Fock space.

Another possibility to obtain a positive operator is the following construction of formal
doubling of degrees of freedom, which, in the present form, can be found in Kupsch [19],
where the connection to the well known construction of eight-component Euclidean Dirac
spinors of Osterwalder and Schrader [23] is also given. From two copiesH(1),H(2) of H
one forms the space

Ĥ = H(1) ⊕H(2)
and analogueously for̂E = E (1)⊕ E (2) and Ê∗ = E (1)∗ ⊕ E (2)∗. Then,Ĥ is decomposed into

Ĥ = Ê ⊕ Ê∗.
If the polar decomposition of the operatorS : E 7→ E is given by

S = UA1 = A2U

with a unitary operatorU and positive operatorsA1, A2, then letŜ on Ê be defined by

Ŝ =
(
A2 S

S† A1

)
. (28)

Ŝ is easily seen to be positive, but has the non-trivial kernel

K := KerS = {f̂ = (Uf,−f )|f ∈ E}
which is isomorphic toE . On the factor spacêF := Ĥ/(K ⊕ K∗) the formωŜ according
to (6) is equivalent toS2. The positive formβ and the operatorJ from above are

β(f̂ , ĝ) = (f̂ |Ŝ+ĝ)

J f̂ =
{
−f̂ ∗ for f̂ ∈ Ê
f̂ ∗ for f̂ ∈ Ê∗.

On F̂ , the operator̂S can be absorbed into the scalar product, and in this case�S is again
given by the canonical tensor�−.

For other than free fields the Schwinger functional still has the form

〈FS |f1 ∧ · · · ∧ f2n〉 FS ∈ T −even(H−1), fi ∈ H1 (29)

but the tensorFS no longer has the simple formFS = exp�S . A general discussion of the
functional (29) in a supersymmetric context can be found in the work of Haba and Kupsch
[8].

For the Dirac field one has

E = L2(R4)⊗ C4.
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For an elementf ∈ H = E ⊕ E∗ ∼= L2(R4) ⊗ C8, let E correspond to the upper four
components andE∗ to the lower ones.

The Euclidean Dirac operator is(m− ∂↗), with inverse operator

S = (m− ∂↗)−1. (30)

It is supposed thatm > 0. The HS operatorT on E for the construction of the triplet
E1 ⊂ E ⊂ E−1 can be chosen as

T = (1+ x2−4)−2

with the Laplace operator4 =∑4
i=1

∂2

∂x2
i

. ThenS is a continuous operator onE, E±1. The

polar decompositionS = AU with a positive operatorA and a unitary operatorU is given
by

A =
√
S†S = (m2−4)− 1

2

U = (m2−4)− 1
2 (m− ∂↗).

(31)

The involution inH is

H 3 f 7→ f ∗(x) =
(

0 1I4
1I4 0

)
f (x)

where 1I4 is the four-by-four unit matrix. The two-point Schwinger functionS2(f, g) is
given by

ω(f, g) =
∫
f T (x)

(
0 S(x, y)

−ST (y, x) 0

)
g(y) dx dy

= 〈�S |f ∧ g〉 = 〈f |S−g〉.
S is not positive [23, section 3.2]. This can be overcome with the previously described

doubling of degrees of freedom.
For a massless Dirac particle the operatorS on E is unbounded, but if one chooses

T = (−4) 1
2 (1+ x2−4)−2

as the HS operator, thenS is not only bounded but even nuclear onE1 [19, section 7].
The operatorsS (30) andA (31) fulfil the following commutation relations, where

γ5 := −γ1γ2γ3γ4.

Sγ5 = −γ5S

Aγ5 = γ5A.

The projection operators onto right- and left-handed Weyl spinors are

P± = 1
2(1I± γ5)

and give a decomposition ofE into

E = E+ + E−
whereE± = P±E . The operatorsP± can be extended to the whole spaceH by

P±f =
(
P± 0
0 P∓

)
∀f ∈ H.

ThenS2 can be decomposed into

S2(f, g) = S+2 (f, g)+ S−2 (f, g) ∀f, g ∈ H (32)
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with S±2 (f, g) = S2(f, P±g) ([18], section 7). An analogueous decomposition can be
obtained for the theory with doubled degrees of freedom. For that purpose let the projection
operatorsP̂± on Ê be defined by

P̂± = 1
2

(
P∓ 0
0 P±

)
.

Again P̂± can be extended to the whole spaceĤ by P̂±f = (P̂±f ∗)∗ for f ∈ Ê∗. This
gives a decomposition ofωŜ(f, g) := 〈f |Ŝ−g〉 into

ωŜ(f, g) = ω+Ŝ (f, g)+ ω
−
Ŝ
(f, g) (33)

with ω±
Ŝ
(f, g) = ωŜ(f, P̂±g) [19, section 7].

Further discussions of the two point functions of Dirac, Weyl and Majorana spinors can
be found in [21].

3.3. Integral representation of Schwinger functionals

One is looking for measuresρ on H−1 ∧ H−1, or a subspace of it, such that one has a
representation

〈exp�S |A〉 =
∫
〈expZ|A〉dρ(Z). (34)

The measureρ is not uniquely determined by (34), since, due to the asymmetric tensor
multiplication, each coordinate〈Z|ei ∧ ej 〉, i < j , appears at most, linearly and so only the
zeroth and first moments of each monomial are determined.

3.3.1. Delta measure.The simplest solution is given by the Dirac delta measureδ�S
supported on�S ∈ T −2 (H−1). In this case, equation (34) becomes a trivial identity.S is
not required to fulfill any positivity conditions. Since Dirac measures in different points are
always mutually singular, this possibility is not further examined.

3.3.2. Induced measure.The second solution is given by a measure which is induced by
complex white noiseµE

0,1I on E−1. For this version one needs a positive operatorS, since
it works only for the canonical tensor�−.

One considers the isotropic decomposition ofH1 into E1 ⊕ E∗1 with respect to the
asymmetric bilinear form�−. One obtains an orthonormal basis{eµ}µ∈N in E1 such that
〈�−|e∗µ ∧ eν〉 = δµν . Let the real subspaceD ⊂ (H1 ∧H1)

R be given as the linear span of
all vectorse∗µ ∧ eµ, µ ∈ N, that is

D = L{e∗µ ∧ eµ|µ ∈ N}
and definePD to be an orthogonal projection ontoD.

For each elementA ∈ H1∧H1 there exists aB ∈ H∧H with A = 02(T )B. Therefore

LA = T LBT † (35)

such that for allA ∈ H1 ∧H1 the operatorLA is trace class.
On the real subspace(H1 ∧H1)

R let the functionalχ be defined by

χ(A) =
∑
E−1

ei〈PDA|φ∗∧φ〉 dµE
0,1I =

∑
E−1

ei(φ|LPDAφ) dµE
0,1I(φ)

= det
E
(1I− iLPDA)

−1 ∀A ∈ (H1 ∧H1)
R. (36)
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For the existence ofχ it is essential thatLPDA is trace class [27].
It is not difficult to show thatAn → A in H1 ∧ H1 implies Tr|LAn | → Tr |LA|, and

from continuity of determinant relative to trace norm the continuity of the functional (36)
in the norm ofH1 ∧H1 follows. From its constructionχ is positive definite and so is a
characteristic functional onH1 ∧H1.

From a HS operatorT : H1 7→ H1 one can construct the tripletH2 ⊂ H1 ⊂ H−2 and
the functional (36), then, defines a probability measureρ on (H−2 ∧ H−2)

R [29]. Since
χ(A) = 1 for A ∈ D⊥, the measureρ is supported on(D)′ ⊂ (H−2 ∧H−2)

R [29, part A,
theorem 19.1].

The functional (36) has the power series

det
E
(1I− iLPDA)

−1 = 1+ i TrE LPDA + · · · . (37)

For an orthonormal basis{eµ}µ∈N in E one has

TrE LPDA =
∑
µ∈N

(eµ|LPDAeµ) =
∑
µ∈N

((PDA)
†|e∗µ ∧ eµ)

=
∑
µ∈N

(e∗µ ∧ eµ|A) = (�−|A).

So the first moment ofρ is given by∫
〈Z|A〉 dρ(Z) = (�−|A) = 〈�−|A〉. (38)

In Dirac notationLe∗µ∧eµ = |eµ〉〈eµ|, and so it is easily seen that

Le∗µ∧eµLe∗ν∧eν = δµνLe∗µ∧eµ .
For µ 6= ν one consequently obtains

(1I− iLe∗µ∧eµ)(1I− iLe∗ν∧eν ) = (1I− i(Le∗µ∧eµ + Le∗ν∧eν )) (39)

and so

χ(Le∗µ∧eµ + Le∗ν∧eν ) = det(1I− i(Le∗µ∧eµ + Le∗ν∧eν ))
= det((1I− iLe∗µ∧eµ)(1I− iLe∗ν∧eν ))
= det(1I− iLe∗µ∧eµ) det(1I− iLe∗ν∧eν )
= χ(Le∗µ∧eµ)χ(Le∗ν∧eν ).

Therefore,(Z|Le∗µ∧eµ) and (Z|Le∗ν∧eν ) are independent random variables forµ 6= ν, and
because of the support properties ofρ one obtains forA = e∗µn ∧ · · · e∗µ1

∧ eµ1 ∧ · · · ∧ eµn
the following integral formula.∫

〈expZ|A〉 dρ (Z) =
∫
〈Z|e∗µ1

∧ eµ1〉 · · · 〈Z|e∗µn ∧ eµn〉 dρ (Z)

=
∫
〈Z|e∗µ1

∧ eµ1〉 dρ (Z) · · ·
∫
〈Z|e∗µn ∧ eµn〉 dρ (Z)

= 〈�−|e∗µ1
∧ eµ1〉 · · · 〈�−|e∗µn ∧ eµn〉

= 〈exp�−|A〉. (40)

For general tensorsA ∈ Tn(E1)∧Tn(E∗1 ) the same equation follows from linearity of integral
and scalar product.

Mainly due to its restricted invariance properties this measure will not be further
considered.
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3.3.3. Non-centred Gaussian measureThe third possibility is given as follows. One
considers a Gaussian measureν�S,1I on (H−1 ∧H−1)

R with Fourier transform

χ(A) =
∑

(H−1∧H−1)R

ei〈Z|A〉 dν�S,1I = ei〈�S |A〉− 1
2‖A‖2

A ∈ (H ∧H)R1 (41)

that is, the non-centred Gaussian measure with mean value�S and covariance 1I. Then
〈·|A1〉 and〈·|A2〉 are independent random variables ifA1 ⊥ A2

If {fi}i∈N is an orthonormal basis inHR, one gets∫
〈expZ|f1 ∧ · · · ∧ f2n〉 dν�S,1I(Z)

=
∑
σ∈S2n

ε(σ )

2nn!

∫
〈Z|fσ(1) ∧ fσ(2)〉 · · · 〈Z|fσ(2n−1) ∧ fσ(2n)〉 dν�S,1I

=
∑
σ∈S2n

ε(σ )

2nn!

∫
〈Z|fσ(1) ∧ fσ(2)〉 dν�S,1I · · ·

∫
〈Z|fσ(2n−1) ∧ fσ(2n)〉 dν�S,1I

=
∑
σ∈S2n

ε(σ )

2nn!
〈�S |fσ(1) ∧ fσ(2)〉 · · · 〈�S |fσ(2n−1) ∧ fσ(2n)〉

= 〈exp�S |f1 ∧ · · · ∧ f2n〉. (42)

For generalA ∈ T −(H) this result again follows from linearity of an integral and scalar
product.

For this measure an arbitrary tensor�S ∈ (H−1 ∧H−1)
R can be used since the mean

value of a Gaussian measure does not have to satisfy any special conditions. The requirement
�S ∈ (H−1∧H−1)

R is especially satisfied if�S is derived from a positive, or at least self-
adjoint, operatorS on E .

If �S ∈ (H−1 ∧ H−1)
R is not fulfilled, as in the case of the Dirac field, one can use

the measureµ�S,1I on the complex spaceH−1 ∧H−1, which is derived from the complex
white noise as an image under the translationZ 7→ Z +�S .

Complex white noise fulfils∑
H−1∧H−1

〈Z|A1〉 · · · 〈Z|An〉 dµ0,1I = 0

if Ai ⊥ Aj for i 6= j . Therefore, instead of (42), one now obtains∫
〈expZ|f1 ∧ · · · ∧ f2n〉 dµ�S,1I(Z)

=
∑
σ∈S2n

ε(σ )

2nn!

∫
〈Z|fσ(1) ∧ fσ(2)〉 · · · 〈Z|fσ(2n−1) ∧ fσ(2n)〉 dµ�S,1I

=
∑
σ∈S2n

ε(σ )

2nn!

∫
〈Z +�S |fσ(1) ∧ fσ(2)〉 · · · 〈Z +�S |fσ(2n−1) ∧ fσ(2n)〉 dµ0,1I

=
∑
σ∈S2n

ε(σ )

2nn!
〈�S |fσ(1) ∧ fσ(2)〉 · · · 〈�S |fσ(2n−1) ∧ fσ(2n)〉

= 〈exp�S |f1 ∧ · · · ∧ f2n〉.
So ν�S,1I and µ�S,1I are suitable measures for the representation (34). As previously
mentioned, the mean value of a Gaussian measure does not have to fulfill any special
conditions. Therefore no positivity requirements forS are necessary and the doubling of
degrees of freedom can be omitted.
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For the massless Dirac field Kupsch [19] obtains from (32) and (33) a decompostion
of the measure space into the direct sum of two independent Weyl fields, but the present
ansatz does not allow for such a simplification.

4. Interaction with classical gauge fields

In the presence of a classical electromagnetic fieldAµ the Lagrange density of the Dirac
theory is

L = 9(D↗−m)9 = 9(∂↗− iA↗−m)9
= L0−9 iA↗9
= L0+9A9

with A = −iA↗. In the perturbative spirit one writes for the generating functional of the
Schwinger functions

L(F) = 〈exp�S | exp�A ∧ F 〉
〈exp�S | exp�A〉 F ∈ T −(H1). (43)

The tensor�S represents the free two-point function according to equation (27), and
�A ∈ H1 ∧H1 is defined by the interactionA through the following equation

〈f |Ag〉 = 〈�A|f ∧ g〉 f, g ∈ H1.

According to [5], equation 3.69 (see also [8], equation (C.2)) this functional can be written
as

L(F) = 〈exp�T |F 〉 (44)

with T = (1I+SA)−1S. The functional (43) can be represented by the non-centred Gaussian
measureν�T ,1I or µ�T ,1I, exactly as in the free field case.

The question of absolute continuity of the interacting measureν�T ,1I relative to the free
measureν�S,1I reduces to the same question for Gaussian measures with different mean
values. For these, according to [16, ch II, theorem 5.3], one obtains absolute continuity if
and only if

�T −�S = �T−S ∈ H ∧H.
According to equation (12) this is equivalent to (see also [17, p 420])

T − S ∈ C2(H).
SinceS is continuous,

(1I+ SA)−1− 1I = SA

1I+ SA ∈ C2(H)

is a sufficient condition for absolute continuity. Assuming continuity of(1I + SA)−1 one
obtains another sufficient condition, namely

SA ∈ C2(H). (45)

This result is also found in [18, section 8], but with a different method. The condition (45)
is a non-trivial requirement which can be fulfilled only after a non-local UV regularization
(see [18, section 8]).

Also for the complex caseµ�S,1I, condition (45) remains valid sinceµ�S,1I can be
written as

µ�S,1I = ν�1
S ,

1
21I × ν�2

S ,
1
21I
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where�1,2
S result from the decomposition

�S = �1
S + i�2

S

of �S into real and imaginary part.

5. Conclusions

In this paper a new method for the construction of fermionic Schwinger functions as
moments of a measure is presented. It essentially uses the fact that fermionic Schwinger
functions are different from zero only for an even number of arguments. The free theory
is treated and also the interaction with a classical electromagnetic field can be described
analogueously to the free field case. But this strongly depends on the algebraic identity (44)
and up till now no method has been completely elaborated to construct non-trivial measures
for other models, where the interaction is of higher order in the fermionic fields, as the
Gross–Neveau or Schwinger model, for example. In that case, the main problem is to find a
closed formula for the functionalL(F) = 〈exp�S | exp�A ∧ F 〉, whereA now is a fourth-
order tensor�A ∈ T −4 (H1). Work in this direction is currently in progress and utilizes,
besides other methods, some functional analytic tools developed for the probabilistic ansatz
for bosonic theories.

One last remark concerns the support properties of the measures in this paper. Instead
of the Hilbert space structureH1 ⊂ H ⊂ H−1 one could also use the structureS(R4) ⊂
L2(R4) ⊂ S ′(R4) of D(R4) ⊂ L2(R4) ⊂ D′(R4) for the caseH = L2(R4), which is more
familiar from bosonic theory. In that case the measures are supported on the distribution
spacesS ′ or D′. The connection between this formulation and the one used in this paper
is based on a special version of Minlos theorem [11, theorem 2.6.1]. It essentially states
that, under certain continuity assumptions on the characteristic functional, the support of a
measure onS ′(R4) or S ′(R4) can be restricted to a subset ofS ′(R4) or D′(R4), which can
be identified withH−1 (see also [10, theorem 1.1]).
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